Вычисление объема тела, вычисление длин дуг


Вычисляются производные степенно-показательных функций. Строятся касательные и нормали к графикам функции в точках, находится угол пересечения между кривыми. Решаются задачи, связанные со скоростью.

Логарифмическое дифференцирование

Пусть функция  дифференцируема в точке x и принимает в этой точке положительное значение. Тогда в окрестности этой точки существует функция   Эту функцию можно рассматривать как сложную функцию аргумента x с промежуточным аргументом y. Продифференцируем эту функцию:

.  Из этого соотношения можно выразить производную . Такая операция нахождения производной после предварительного логарифмирования называется логарифмическим дифференцированием. Существуют функции, производную которых можно найти только таким способом. К числу этих функций относится степенно-показательная функция , где  и  – дифференцируемые функции аргумента x. В качестве примера найдём производную этой функции с помощью логарифмического дифференцирования.

Прологарифмируем эту функцию: .

Продифференцируем обе части полученного равенства:  , отсюда (т.к. )

.

Раскрыв скобки, получим окончательную формулу

  (13.1)

Рассмотрим пример конкретной функции.

Пример. Найти производную функции .

Решение. Можно сразу воспользоваться формулой (13.1), но можно выполнить логарифмическое дифференцирование и непосредственно:

,

.

Бывают случаи, когда применение логарифмического дифференцирования не необходимо, но целесообразно. Пусть, например, . Конечно, в этом случае можно непосредственно воспользоваться правилами вычисления производной, но логарифмическое дифференцирование упрощает выкладки:

,

,

.

Рассмотрим теперь линейные дифференциальные уравнения первого порядка с переменными коэффициентами. Выпишем такое уравнение в общем виде:

 у¢ + a(x)y = b(x).  (9)

Здесь a(x) ‑ некоторая функция аргумента x. Как мы это делали раньше, вначале будем искать решение однородного уравнения, положив функцию b(x) в правой части (9) равной нулю. Представив уравнение у¢ + a(x)y = 0 в виде

  ,

после интегрирования получаем

 

или

 . (10)

Здесь A ‑ неопределенная константа, которую можно найти из начального условия y(0) = 0.

Пример. Решить уравнение y’ + 2xy = 0 при начальном условии y(0) = 3.

В этом случае

a(x) = 2x,

и начальное условие определяет A = 3. Искомое решение имеет вид

 .

Перейдем к решению неоднородного линейного дифференциального уравнения первого порядка с переменными коэффициентами. Положим в формуле (10) A = A(x), то есть будем считать множитель A некоторой функцией от x. Этот метод называется методом вариации произвольной постоянной, и с его помощью мы попытаемся решить уравнение (9) при условии, что b(x) есть некоторая функция, не равная тождественно нулю. Из формулы (10) получаем:

.

После подстановки этих выражений уравнение (9) принимает вид

,

откуда следует уравнение относительно функции :

 ,

с решением

 .

Подставив это выражение в (10), получим общее решение уравнения (9):

 . (11)

Формулируются и доказываются теоремы Роля, Лагранжа и Коши. Рассматриваются их взаимосвязь. Дается геометрическая интерпретация теорем Роля и Лагранжа.
новости ближнего зарубежья, мнения экспертов.
Механический и геометрический смысл производной