Вычисление площадей фигур при параметрическом задании границы

Вычислить площадь фигуры, ограниченной эллипсом  

Найти площадь астроиды

Найти площадь фигуры, ограниченной одной аркой циклоиды  и осью

Вычислить площадь фигуры,  ограниченной кривой .

Найти площадь петли кривой: ; 

Вычислить площадь, содержащуюся  внутри кардиоиды ;  

Площадь в полярных координатах

Найти площадь фигуры, лежащей в первой четверти и ограниченной параболой  и прямыми  и 

Найти площадь фигуры, лежащей  вне круга  и ограниченной кривой 

Вычислить площадь параллелограмма, две стороны которого образованы векторами

Вычислить площадь фигуры, ограниченной окружностями  и

Найти  площадь фигуры, вырезаемой окружностью   из кардиоиды 

Найти  площадь петли декартова листа

Физические приложения поверхностных интегралов Производные высших порядков Математика решение задач

Поверхностные интегралы применяются во многих прикладных расчетах. В частности, с их помощью вычисляются

  • Масса оболочки;
  • Центр масс и моменты инерции оболочки;
  • Сила притяжения и сила давления;
  • Поток жидкости и вещества через поверхность;
  • Электрический заряд, распределенный по поверхности;
  • Электрические поля (теорема Гаусса в электростатике).

Сила притяжения между поверхностью S и точечным телом m определяется выражением

Найти массу цилиндрической оболочки, заданной параметрически в виде , где

Найти массу параболической оболочки, заданной уравнением и имеющей плотность .

Найти центр масс части сферической оболочки , расположенной в первом октанте и имеющей постоянную плотность μ0.

Вычислить момент инерции однородной сферической оболочки x2 + y2 + z2 = 1 (z ≥ 0) с плотностью μ0 относительно оси Oz.

Найти силу притяжения между полусферой с постоянной плотностью μ0 радиусом r с центром в начале координат и точечной массой m, расположенной в начале координат.

Оценить силу давления, действующую на дамбу, схематически показанную на рисунке 6 и представляющую собой резервуар воды шириной W и высотой H.

Физические приложения тройных интегралов

Найти центроид однородного полушара радиусом R.

Определить массу и координаты центра тяжести единичного куба с плотностью ρ(x,y,z) = x + 2y + 3z

Найти массу шара радиуса R, плотность γ которого пропорциональна квадрату расстояния от центра.

С какой силой притягивает однородный шар массы M материальную точку массы m, расположенную на расстоянии a от центра шара (a > R)?

Пусть планета имеет радиус R, а ее плотность выражается зависимостью

Теорема Стокса

Показать, что криволинейный интеграл равен 0 вдоль любого замкнутого контура C.

Используя теорему Стокса, найти криволинейный интеграл .

Вычислить криволинейный интеграл , используя теорему Стокса.

Найти интеграл с использованием теоремы Стокса

Поверхностные интегралы первого рода

Вычислить поверхностный интеграл , где S − часть плоскости , лежащая в первом октанте

Вычислить интеграл , где S представляет собой полную поверхность конуса .

Вычислить интеграл , где S − часть конуса внутри поверхности .

Найти интеграл , где поверхность S − часть сферы , лежащая в первом октанте.

Вычислить интеграл . Поверхность S задана параметрически в виде.

Поверхностные интегралы второго рода Если поверхность S задана явно в виде уравнения z = z(x,y), где z(x,y) − дифференцируемая функция в области D(x,y), то поверхностный интеграл второго рода от векторного поля по поверхности S записывается в одной из следующих форм

Вычислить поверхностный интеграл от векторного поля по внутренне ориентированной поверхности S, заданной уравнением , где .

Оценить поток векторного поля через коническую поверхность , ориентированную внешней стороной.

Оценить поток векторного поля через внутреннюю сторону единичной сферы .

Вычислить интеграл , где S − часть внутренней поверхности эллипсоида, заданного параметрически в виде .

Найти интеграл , где S − внутренняя поверхность сферы .

Тройные интегралы в декартовых координатах

Вычислить интеграл

Вычислить тройной интеграл где область U ограничена поверхностями

Выразить тройной интеграл через повторные интегралы шестью различными способами.

Тройные интегралы в цилиндрических координатах

Вычислить интеграл где область U ограничена поверхностью x2 + y2 ≤ 1 и плоскостями z = 0, z = 1

Вычислить интеграл где область U ограничена поверхностями x2 + y2 = 3z, z = 3

Используя цилиндрические координаты, найти значение интеграла

Вычислить интеграл, используя цилиндрические координаты:

Найти интеграл где область U ограничена плоскостями z = x + 1, z = 0 и цилиндрическими поверхностями x2 + y2 = 1, x2 + y2 = 4

Тройные интегралы в сферических координатах

Найти интеграл , где область интегрирования U − шар, заданный уравнением x2 + y2 + z2 = 25.

Вычислить интеграл xyzdxdydz, где область U представляет собой часть шара x2 + y2 + z2R2, расположенную в первом октанте x ≥ 0, y ≥ 0, z ≥ 0.

Найти тройной интеграл где область U ограничена эллипсоидом

Вычислить интеграл используя сферические координаты

История искусства Европы 17 века Искусство Италии, Испании, Фландрии, Голландии, Франции Парижский Лувр носит имя средневекового замка