Вычисление площадей фигур при параметрическом задании границы

Традициями эпохи Возрождения
Карта Западной Европы
Лоренцо Бернини
Микеланджело да Караваджо
Призвание апостола Матфея
Обращение Савла
Положение во гроб
Успении Богоматери
Эль Греко

Погребение графа Оргаса

Портрет аристократа
Апостолы Пётр и Павел
Сошествии Святого Духа
Вид Толедо
Диего Веласкес
Менины
Пряхи
Венера перед зеркалом
Сдача Бреды
Аристократические портреты
«Завтрак» и серия «Шуты и карлики
Хусепе Рибера

Исаак, благословляющий Иакова

Хромоножка
Святая Инесса
Нищие философы
Мученичество Святого Варфоломея
Питер Пауэл Рубенс

Жимолостная беседка

Кермесса
Серии картин «Жизнь Марии Медичи»
Портрет камеристки инфанты Изабеллы
Елена Фоурмен и «Шубка»
Возчики камней
Автопортрет
Портрет Изабеллы Брандт
Большое количество заказов
Охота на гиппопотамов и крокодилов
«Похищение дочерей Левкиппа» и «Битва греков с амазонками»
Водружение креста
Рембрандт Ван Рейн

«Анатомия доктора Тулпа»

«Возвращение блудного сына»
«Еврейская невеста»
«Автопортрет»
«Старик в красном» и «Портрет Титуса»
«Портрет Хендрикьё Стоффелс»
«Заговор Юлия Цивилиса»
«Три дерева»
«Выступление стрелковой роты капитана Франса Баннинга Кока»
«Даная»
«Автопортрет с Саскией на коленях»
«Портрет Яна Сикса»
Никола Пуссен и живопись
Классицизма

«Царство Флоры»

«Пейзаж с Полифемом»
«Аркадские пастухи»
«Танкред и Эрминия»
Искусство Европы XVIII века
Художественная жизнь Европы
Архитектура XVIII столетия
Рококо
Малый Трианон
Церквь Святой Женевьевы
Эпоха неоклассицизма
Клод Никола Леду
Жан Батист Пигаль
Галантные празднества
Парижский Лувр
Фарфоровые изделия
Филиппе Ювара
Методы математической
статистики
Искусство России XVIII века
Архитектурные проекты
Москвы 20 годов
Архитектурная история Москвы
Советы для радиолюбителя
Авангардное искусство
Ядерные испытания на
архипелаге Новая Земля
Безопасность в
компьютерных сетях
Аппаратное обеспечение
компьютера
Установка системы
Microsoft Windows 2003
Вычисление производной
и пределов
Вычисление площадей в
декартовых координатах
Вычисление площадей фигур
при параметрическом задании
границы
Вычисление объема тела,
вычисление длин дуг
Векторная и линейная алгебра
Монтаж радиоэлементов
и микросхем

Вычислить площадь фигуры, ограниченной эллипсом  

Найти площадь астроиды

Найти площадь фигуры, ограниченной одной аркой циклоиды  и осью

Вычислить площадь фигуры,  ограниченной кривой .

Найти площадь петли кривой: ; 

Вычислить площадь, содержащуюся  внутри кардиоиды ;  

Площадь в полярных координатах

Найти площадь фигуры, лежащей в первой четверти и ограниченной параболой  и прямыми  и 

Найти площадь фигуры, лежащей  вне круга  и ограниченной кривой 

Вычислить площадь параллелограмма, две стороны которого образованы векторами

Вычислить площадь фигуры, ограниченной окружностями  и

Найти  площадь фигуры, вырезаемой окружностью   из кардиоиды 

Найти  площадь петли декартова листа

Физические приложения поверхностных интегралов Производные высших порядков Математика решение задач

Поверхностные интегралы применяются во многих прикладных расчетах. В частности, с их помощью вычисляются

  • Масса оболочки;
  • Центр масс и моменты инерции оболочки;
  • Сила притяжения и сила давления;
  • Поток жидкости и вещества через поверхность;
  • Электрический заряд, распределенный по поверхности;
  • Электрические поля (теорема Гаусса в электростатике).

Сила притяжения между поверхностью S и точечным телом m определяется выражением

Найти массу цилиндрической оболочки, заданной параметрически в виде , где

Найти массу параболической оболочки, заданной уравнением и имеющей плотность .

Найти центр масс части сферической оболочки , расположенной в первом октанте и имеющей постоянную плотность μ0.

Вычислить момент инерции однородной сферической оболочки x2 + y2 + z2 = 1 (z ≥ 0) с плотностью μ0 относительно оси Oz.

Найти силу притяжения между полусферой с постоянной плотностью μ0 радиусом r с центром в начале координат и точечной массой m, расположенной в начале координат.

Оценить силу давления, действующую на дамбу, схематически показанную на рисунке 6 и представляющую собой резервуар воды шириной W и высотой H.

Физические приложения тройных интегралов

Найти центроид однородного полушара радиусом R.

Определить массу и координаты центра тяжести единичного куба с плотностью ρ(x,y,z) = x + 2y + 3z

Найти массу шара радиуса R, плотность γ которого пропорциональна квадрату расстояния от центра.

С какой силой притягивает однородный шар массы M материальную точку массы m, расположенную на расстоянии a от центра шара (a > R)?

Пусть планета имеет радиус R, а ее плотность выражается зависимостью

Теорема Стокса

Показать, что криволинейный интеграл равен 0 вдоль любого замкнутого контура C.

Используя теорему Стокса, найти криволинейный интеграл .

Вычислить криволинейный интеграл , используя теорему Стокса.

Найти интеграл с использованием теоремы Стокса

Поверхностные интегралы первого рода

Вычислить поверхностный интеграл , где S − часть плоскости , лежащая в первом октанте

Вычислить интеграл , где S представляет собой полную поверхность конуса .

Вычислить интеграл , где S − часть конуса внутри поверхности .

Найти интеграл , где поверхность S − часть сферы , лежащая в первом октанте.

Вычислить интеграл . Поверхность S задана параметрически в виде.

Поверхностные интегралы второго рода Если поверхность S задана явно в виде уравнения z = z(x,y), где z(x,y) − дифференцируемая функция в области D(x,y), то поверхностный интеграл второго рода от векторного поля по поверхности S записывается в одной из следующих форм

Вычислить поверхностный интеграл от векторного поля по внутренне ориентированной поверхности S, заданной уравнением , где .

Оценить поток векторного поля через коническую поверхность , ориентированную внешней стороной.

Оценить поток векторного поля через внутреннюю сторону единичной сферы .

Вычислить интеграл , где S − часть внутренней поверхности эллипсоида, заданного параметрически в виде .

Найти интеграл , где S − внутренняя поверхность сферы .

Тройные интегралы в декартовых координатах

Вычислить интеграл

Вычислить тройной интеграл где область U ограничена поверхностями

Выразить тройной интеграл через повторные интегралы шестью различными способами.

Тройные интегралы в цилиндрических координатах

Вычислить интеграл где область U ограничена поверхностью x2 + y2 ≤ 1 и плоскостями z = 0, z = 1

Вычислить интеграл где область U ограничена поверхностями x2 + y2 = 3z, z = 3

Используя цилиндрические координаты, найти значение интеграла

Вычислить интеграл, используя цилиндрические координаты:

Найти интеграл где область U ограничена плоскостями z = x + 1, z = 0 и цилиндрическими поверхностями x2 + y2 = 1, x2 + y2 = 4

Тройные интегралы в сферических координатах

Найти интеграл , где область интегрирования U − шар, заданный уравнением x2 + y2 + z2 = 25.

Вычислить интеграл xyzdxdydz, где область U представляет собой часть шара x2 + y2 + z2R2, расположенную в первом октанте x ≥ 0, y ≥ 0, z ≥ 0.

Найти тройной интеграл где область U ограничена эллипсоидом

Вычислить интеграл используя сферические координаты

История искусства Европы 17 века Искусство Италии, Испании, Фландрии, Голландии, Франции Парижский Лувр носит имя средневекового замка