Закон распределения случайной величины

Методы математической статистики

Задачи статистической проверки гипотез.

Статистическая проверка гипотез является вторым после статистического оценивания параметров распределения и в то же время важнейшим разделом математической статистики.

Методы математической статистики позволяют проверить предположения о законе распределения некоторой случайной величины (генеральной совокупности), о значениях параметров этого закона (например Mx, Dx ), о наличии корреляционной зависимости между случайными величинами, определенными на множестве объектов одной и той же генеральной совокупности.

Пусть по некоторым данным имеются основания выдвинуть предположения о законе распределения или о параметре закона распределения случайной величины (или генеральной совокупности, на множестве объектов которой определена эта случайная величина). Задача заключается в том, чтобы подтвердить или опровергнуть это предположение, используя выборочные (экспериментальные) данные.

Гипотезы о значениях параметров распределения или о сравнительной величине параметров двух распределений называются параметрическими гипотезами. Гипотезы о виде распределения называются непарамет­рическими гипотезами.

Проверить статистическую гипотезу – это значит проверить, согласуются ли данные, полученные из выборки с этой гипотезой. Проверка осуществляется с помощью статистического критерия. Статистический критерий – это случайная величина, закон распределения которой (вместе со значениями параметров) известен в случае, если принятая гипотеза справедлива. Этот критерий называют еще критерием согласия (имеется в виду согласие принятой гипотезы с результатами, полученными из выборки).

Гипотезу, выдвинутую для проверки ее согласия с выборочными данными, называют нулевой гипотезой и обозначают H0. Вместе с гипотезой H0 выдвигается альтернативная или конкурирующая гипотеза, которая обозначается H1. Например:

1)

H0: Mx= 0

2)

H0: Mx= 0

3)

H0: Mx= 0

H1: Mx¹ 0

H1: Mx> 0

H1: Mx= 2

Пусть случайная величина K – статистический критерий проверки некоторой гипотезы H0. При справедливости гипотезы H0 закон распределения случайной величины K характеризуется некоторой известной нам плотностью распределения pK(x).

Выберем некоторую малую вероятность a, равную 0,05 , 0,01 или еще меньшую. Определим критическое значение критерия Kкр как решение одного из трех уравнений, в зависимости от вида нулевой и конкурирующей гипотез:

P(K> Kкр) = a (1); P(K< Kкр) = a (2); P((K< Kкр1)Ç(K> Kкр2)) = a 

Вид критической области зависит от того, какая гипотеза выдвинута в качестве конкурирующей.

Чем меньше уровень значимости, тем меньше вероятность отвергнуть проверяемую гипотезу H0, когда она верна, то есть совершить ошибку первого рода. Но с уменьшением уровня значимости расширяется область принятия гипотезы H0 и увеличивается вероятность принятия проверяемой гипотезы, когда она неверна, то есть когда предпочтение должно быть отдано конкурирующей гипотезе.

 Пусть при справедливости гипотезы H0 статистический критерий K имеет плотность распределения p0(x), а при справедливости конкурирующей гипотезы H1 – плотность распределения p1(x). Графики этих функций приведены на рисунке 4. При некотором уровне значимости находится критическое значение Kкр и правостороняя критическая область. Если значение Kв, определенное по выборочным данным, оказывается меньше, чем Kкр, то гипотеза H0 принимается. Предположим, что справедлива на самом деле конкурирующая гипотеза H1. Тогда вероятность попадания критерия в область принятия гипотезы H0 есть некоторое число b, равное площади фигуры, образованной графиком функции p1(x) и полубесконечной частью горизонтальной координатной оси, лежащей слева от точки Kкр. Очевидно, что b – это вероятность того, что будет принята неверная гипотеза H0.

Принятие неверной гипотезы называется ошибкой второго рода. В рассмотренном случае число b – это вероятность ошибки второго рода. Число 1 – b, равное вероятности того, что не совершается ошибка второго рода, называется мощностью критерия. На рисунке 4 мощность критерия равна площади фигуры, образованной графиком функции p1(x).и полубесконечной частью горизонтальной координатной оси, лежащей справа от точки Kкр.

Выбор статистического критерия и вида критической области осуществляется таким образом, чтобы мощность критерия была максимальной.

Проверка гипотезы о равенстве дисперсий.

Гипотезы о дисперсии играют очень важную роль в экономико–математическом моделировании, так как величина рассеяния экспериментальных выборочных данных относительно рассчитанных теоретических значений соответствующих параметров, характеризующаяся дисперсией, дает возможность судить о пригодности (адекватности) теории или модели, на основании которой строится теория.

Пусть нормально распределенная случайная величина x определена на некотором множестве, образующем генеральную совокупность, а нормально распределенная случайная величина h определена на другом множестве, которое тоже составляет генеральную совокупность. Из обеих совокупностей делаются выборки: из первой – объема n1, а из второй – объема n2 (отметим, что объем выборки не всегда можно определить заранее, как например в случае, если он равен количеству рыб, попавших в сеть). По каждой выборке рассчитывается исправленная выборочная дисперсия: s12 для выборки из первой совокупности и s22 для выборки из второй совокупности.

Проверка статистической значимости выборочного коэффициента корреляции.

Проверкой статистической значимости выборочной оценки d параметра D генеральной совокупности называется проверка статистической гипотезы H0: D = 0, при конкурирующей гипотезе
H1:
D ¹ 0. Если гипотеза H0 отвергается, то оценка d считается статистически значимой.

Пусть имеются две случайные величины x и h, определенные на множестве объектов одной и той же генеральной совокупности, причем обе имеют нормальное распределение. Задача заключается в проверке статистической гипо­тезы об отсутствии корреляционной зависимости между случайными величинами x и h: H0: rxh = 0; H1: rxh ¹ 0. Здесь rxh – коэффициент линейной корреляции.

Проверка гипотезы о равенстве дисперсий.

Гипотезы о дисперсии играют очень важную роль в экономико–математическом моделировании, так как величина рассеяния экспериментальных выборочных данных относительно рассчитанных теоретических значений соответствующих параметров, характеризующаяся дисперсией, дает возможность судить о пригодности (адекватности) теории или модели, на основании которой строится теория.

Пусть нормально распределенная случайная величина x определена на некотором множестве, образующем генеральную совокупность, а нормально распределенная случайная величина h определена на другом множестве, которое тоже составляет генеральную совокупность. Из обеих совокупностей делаются выборки: из первой – объема n1, а из второй – объема n2 (отметим, что объем выборки не всегда можно определить заранее, как например в случае, если он равен количеству рыб, попавших в сеть). По каждой выборке рассчитывается исправленная выборочная дисперсия: s12 для выборки из первой совокупности и s22 для выборки из второй совокупности.

Теория вероятностей - специальный раздел курса высшей математики, занимающийся изучением математических закономерностей массовых однородных случайных явлений. Следу-ет особо подчеркнуть, что методы теории вероятностей по самой своей природе не дают возможности предска-зать исход отдельного случайного явления, но дают возможность предсказать средний суммарный резуль-тат массы однородных случайных явлений.
Задачи статистической проверки гипотез