Задачи для самостоятельного решения

Методы математической статистики

Задачи для самостоятельного решения.

1) Автокомбинат получил заявку от строительной фирмы на 5 тяжёлых грузовиков для работы на стройке. Тяжёлый грузовик можно заменить двумя лёгкими грузовиками. На автокомбинате в настоящий момент имеется 5 свободных тяжёлых грузовиков и 5 свободных лёгких грузовиков. Сколько вариантов составления колонны грузовиков для работы на стройке имеет автокомбинат? (Учесть, что каждая машина закреплена за своим шофёром).

Ответ: 101.

2) Сколькими способами можно разложить 7 одинаковых шаров по 4-м ящикам, если в каждый ящик должен попасть хотя бы один шар?

Ответ: 20.

3) Сколькими способами можно разложить 5 разноцветных шаров по 3-м ящикам?

Ответ: 243.

4) Директор фирмы составил список из 5-ти человек, которых он может назначить на вакантную должность своего заместителя, и список из 4-х человек, которых он может назначить на вакантную должность главного бухгалтера. В оба списка вошёл сотрудник Иванов. Других пересечений этих списков не оказалось. Сколько вариантов заполнения двух вакантных должностей имеет директор?

Ответ: 19.

5) Директор фирмы составил список из 5-ти возможных кандидатов на вакантные должности своих 1-го, 2-го и 3-го заместителей, а также список из 4-х возможных кандидатов на 2 вакантные должности своих помощников. Сколько вариантов заполнения пяти вакантных должностей имеет директор?

Ответ: 360.

6) Сколько можно найти вариантов расстановки на полке 10-ти томов собрания сочинений при условии, что первый, пятый и десятый тома не должны образовывать тройку стоящих рядом книг?

Ответ: 84×8!

7) У одного человека есть 7 книг, а у другого — 9 книг. Сколькими способами они могут обменять три книги одного на три книги другого?

Ответ: 2940.

8) Бригада строителей состоит из 16-ти штукатуров и 4-х маляров. Сколькими способами бригаду можно разделить на две бригады, чтобы в одной из них было 10 штукатуров и 2 маляра, а в другой 6 штукатуров и 2 маляра?

Ответ: 48048

2) Сколькими способами можно разложить 7 одинаковых шаров по 4-м ящикам, если каждый ящик должен попасть хотя бы один шар?

Ответ: 20.

3) Сколькими способами можно разложить 5 разноцветных шаров по 3-м ящикам?

Ответ: 243.

4) Директор фирмы составил список из 5-ти человек, которых он может назначить на вакантную должность своего заместителя, и список из 4-х человек, которых он может назначить на вакантную должность главного бухгалтера. В оба списка вошёл сотрудник Иванов. Других пересечений этих списков не оказалось. Сколько вариантов заполнения двух вакантных должностей имеет директор?

Случайный эксперимент, элементарные исходы, события.

Случайным (стохастическим) экспериментом или испытанием называется осуществление какого-либо комплекса условий, который можно практически или мысленно воспроизвести сколь угодно большое число раз.

Примеры случайного эксперимента: подбрасывание монеты, извлечение одной карты из перетасованной колоды.

Явления, происходящие при реализации этого комплекса условий, то есть в результате случайного эксперимента, называются элементарными исходами. Считается, что при проведении случайного эксперимента реализуется только один из возможных элементарных исходов.

Если монету подбросить один раз, то элементарными исходами можно считать выпадение герба (Г) или цифры (Ц).

Если случайным экспериментом считать троекратное подбрасывание монеты, то элементарными исходами можно считать следующие:

Приведем пример объединения событий. Пусть два стрелка стреляют в мишень одновременно, и событие А состоит в том, что в мишень попадает 1-й стрелок, а событие B – в том, что в мишень попадает 2-й. Событие означает, что мишень поражена, или, иначе, что в мишень попал хотя бы один из стрелков.

Произведением (пересечением)  событий А и B называется событие, состоящее из всех тех элементарных исходов, которые принадлежат и А и B. На рисунке 3 пересечение событий А и B изображено в виде заштрихованной области. В условиях приведенного выше примера событие  заключается в том, что в мишень попали оба стрелка.

 

 

 

Можно выделить два типа моделей описания объектов окружающего мира (в частности, экономиче-ских). Детерминированные модели предполагают жесткие функциональные связи между переменными моде-ли (Пример - при равноускоренном движении тела из состояния покоя пройденный путь пропорционален квад-рату времени движения, или спрос обратно пропорционален цене товара). Стохастические допускают наличие случайных воздействий на исследуемые показатели и используют для их описания методы теории вероятностей и математической статистики.
Классическое определение вероятности