Задачи для самостоятельного решения

Методы математической статистики

Вариационный ряд.

Пусть для объектов генеральной совокупности определен некоторый признак или числовая характеристика, которую можно замерить (размер детали, удельное количество нитратов в дыне, шум работы двигателя). Эта характеристика – случайная величина x, принимающая на каждом объекте определенное числовое значение. Из выборки объема n получаем значения этой случайной величины в виде ряда из n чисел:

 x1, x2,..., xn. (*)

Эти числа называются значениями признака.

Среди чисел ряда (*) могут быть одинаковые числа. Если значения признака упорядочить, то есть расположить в порядке возрастания или убывания, написав каждое значение лишь один раз, а затем под каждым значением xi признака написать число mi, показывающее сколько раз данное значение встречается в ряду (*):

x1

x2

x3

...

xk

m1

m2

m3

...

mk

то получится таблица, называемая дискретным вариационным рядом. Число mi называется частотой i-го значения признака.

Очевидно, что xi в ряду (*) может не совпадать с xi в вариационном ряду. Очевидна также справедливость равенства

 .

Если промежуток между наименьшим и наибольшим значениями признака в выборке разбить на несколько интервалов одинаковой длины, каждому интервалу поставить в соответствие число выборочных значений признака, попавших в этот интервал, то получим интервальный вариационный ряд. Если признак может принимать любые значения из некоторого промежутка, то есть является непрерывной случайной величиной, приходится выборку представлять именно таким рядом. Если в вариационном интервальном ряду каждый интервал [ai; ai+1) заменить лежащим в его середине числом (ai+ai+1)/2, то получим дискретный вариационный ряд. Такая замена вполне естественна, так как, например, при измерении размера детали с точностью до одного миллиметра всем размерам из промежутка [49,5; 50,5), будет соответствовать одно число, равное 50.

Точечные оценки параметров генеральной совокупности.

Во многих случаях мы располагаем информацией о виде закона распределения случайной величины (нормальный, бернуллиевский, равномерный и т. п.), но не знаем параметров этого распределения, таких как Mx, Dx. Для определения этих параметров применяется выборочный метод.

Пусть выборка объема n представлена в виде вариационного ряда. Назовем выборочной средней величину

 

Величина  называется относительной частотой значения признака xi. Если значения признака, полученные из выборки не группировать и не представлять в виде вариационного ряда, то для вычисления выборочной средней нужно пользоваться формулой

Для доказательства несмещённости некоторых точечных оценок будем рассматривать выборку объема n как систему n независимых случайных величин x1, x2,... xn , каждая из которых имеет тот же закон распределения с теми же параметрами, что и случайная величина x, представляющая генеральную совокупность. При таком подходе становятся очевидными равенства: Mxi = Mxi =Mx;
Dxi = D
xi =Dx для всех k = 1,2,...n.

Теперь можно показать, что выборочная средняя есть несмещенная оценка средней генеральной совокупности или , что то же самое, математического ожидания интересующей нас случайной величины x :

Интервальные оценки.

Точечные оценки параметров генеральной совокупности могут быть приняты в качестве ориентировочных, первоначальных результатов обработки выборочных данных. Их недостаток заключается в том, что неизвестно, с какой точностью оценивается параметр. Если для выборок большого объема точность обычно бывает достаточной (при условии несмещенности, эффективности и состоятельности оценок), то для выборок небольшого объема вопрос точности оценок становится очень важным.

Введем понятие интервальной оценки неизвестного параметра генеральной совокупности (или случайной величины x, определенной на множестве объектов этой генеральной совокупности). Обозначим этот параметр через D. По сделанной выборке по определенным правилам найдем числа D1 и D2, так чтобы выполнялось условие:

Задача. Пусть имеется генеральная совокупность с некоторой характеристикой, распределенной по нормальному закону с дисперсией, равной 6,25. Произведена выборка объема n = 27 и получено средневыборочное значение характеристики = 12. Найти доверительный интервал, покрывающий неизвестное математическое ожидание исследуемой характеристики генеральной совокупности с надежностью g =0,99.

Решение. Сначала по таблице для функции Лапласа найдем значение t из равенства F (t) = g / 2 = 0,495. По полученному значению t = 2,58 определим точность оценки (или половину длины доверительного интервала) d: d = 2,5´2,58 / » 1,24. Отсюда получаем искомый доверительный интервал: (10,76; 13,24).

Доверительный интервал для математического ожидания нормального распределения при неизвестной дисперсии.

Пусть x – случайная величина, распределенная по нормальному закону с неизвестным математическим ожиданием Mx, которое обозначим буквой a . Произведем выборку объема n. Определим среднюю выборочную  и исправленную выборочную дисперсию s2 по известным формулам.

Доверительный интервал для дисперсии нормального распределения.

Пусть случайная величина x распределена по нормальному закону, для которого дисперсия Dx неизвестна. Делается выборка объема n . Из нее определяется исправленная выборочная дисперсия s2. Случайная величина  распределена по закону c2 c n –1 степенями свободы. По заданной надежности g можно найти сколько угодно границ c12 и c22 интервалов, таких, что

Математическая статистика, используя специальный математический аппарат регрессионного и корре-ляционного анализа, помогает установить форму зависимости результативного признака от параметров и оце-нить степень их важности и взаимосвязи. Крайними (предельными) случаями в этом плане являются некорре-лированные (несвязанные) и функционально связанные величины.
Классическое определение вероятности