Эти три схемы образуют три простейших вентиля. Они называются вентилями НЕ, НЕ-И и НЕ-ИЛИ соответственно. Вентили НЕ часто называют инверто- рами. Мы будем использовать оба термина. Если мы примем соглашение, что высокое напряжение ( Усс) — это логическая 1, а низкое напряжение («земля») — логический 0, то мы сможем выражать значение на выходе как функцию от входных значений. Значки, которые используются для изображения этих трех типов вентилей, показаны на рис. 3.2, а-в. Там же показаны режимы работы функции для каждой схемы. На этих рисунках А и В — входные сигналы, X — выходной сигнал. Каждая строка таблицы определяет выходной сигнал для различных комбинаций входных сигналов.
Рис. 3.2. Значки для изображения пяти основных вентилей.
Режимы работы функции для каждого вентиля
Если выходной сигнал на рис. 3.2, б подать в инвертор, мы получим другую схему, противоположную вентилю НЕ-И, то есть такую, у которой выходной сигнал равен 1 тогда и только тогда, когда оба входных сигнала равны 1. Такая схема называется вентилем И; ее изображение и описание соответствующей функции даны на рис. 3.2, г. Точно так же вентиль НЕ-ИЛИ может быть связан с инвертором. Тогда получится схема, у которой выходной сигнал равен 1 в том случае, если хотя бы один из входных сигналов единичный, и равен 0, если оба входных сигнала нулевые. Изображение этой схемы, которая называется вентилем ИЛИ, а также описание соответствующей функции даны на рис. 3.2, д. Маленькие кружочки в схемах инвертора, вентиля НЕ-И и вентиля НЕ-ИЛИ называются инвертирующими выходами. Они также могут использоваться в другом контексте для указания на инвертированный сигнал.
Пять вентилей, изображенные на рис. 3.2, составляют основу цифрового логического уровня. Из предшествующего обсуждения должно быть ясно, что вентили НЕ-И и НЕ-ИЛИ требуют два транзистора каждый, а вентили И и ИЛИ — три транзистора каждый. По этой причине во многих компьютерах используются вентили НЕ-И и НЕ-ИЛИ, а не И и ИЛИ. (На практике все вентили строятся несколько иначе, но вентили НЕ-И и НЕ-ИЛИ в любом случае проще, чем И и ИЛИ.) Следует упомянуть, что вентили могут иметь более двух входов. В принципе вентиль НЕ-И, например, может иметь произвольное количество входов, но на практике больше восьми обычно не бывает.
Хотя устройство вентилей относится к уровню физических устройств, мы все же упомянем основные линейки производственных технологий, так как они часто упоминаются в литературе. Две основные технологии — биполярная и МОП (металл, оксид, полупроводник). Среди биполярных технологий можно назвать ТТЛ (транзисторно-транзисторная логика), которая служила основой цифровой электроники на протяжении многих лет, и ЭСЛ (эмиттерно-связанная логика), которая используется в тех случаях, когда требуется высокая скорость выполнения операций. В отношении вычислительных схем более распространена технология МОП.
МОП-вентили работают медленнее, чем ТТЛ и ЭСЛ, но потребляют гораздо меньше энергии и занимают гораздо меньше места, поэтому можно компактно расположить большое количество таких вентилей. Вентили МОП имеют несколько разновидностей: р-канальный МОП, я-канальный МОП и комплиментарный МОП. Хотя МОП-транзисторы конструируются не так, как биполярные транзисторы, они тоже могут функционировать как электронные переключатели. Современные процессоры и память чаще всего производятся с использованием технологии комплиментарных МОП, которая работает при напряжении +3,3 В. Это все, что мы можем сказать об уровне физических устройств. Читатели, желающие узнать больше об этом уровне, могут обратиться к литературе, приведенной в главе 9.
Аппаратное обеспечение компьютера Безопасность в компьютерных сетях | |