Французский стиль в русской архитектуре Архитектурные проекты Москвы 20 годов Павел Филонов и русский модернизм Архитектурная история Москвы Авангардное искусство Практика выполнения технических чертежей

Начертательная геометрия Примеры выполнения заданий

Вращение вокруг проецирующей оси

Этот метод заключается в том, что любая точка вращается вокруг какой-либо оси, перпендикулярной к одной из плоскостей проекции. При этом точка в пространстве движется по траектории окружности, которая лежит в плоскости, перпендикулярной к оси вращения. Система плоскостей проекций остается неизменной.

Например, при вращении точки А вокруг оси i (рис. 9.3), перпендикулярной к П2, она движется по траектории, которая проецируется на плоскость П1 в виде окружности (точки А1 A1', a1, a1'" и т.д.), а на плоскость П2 - в виде следа горизонтальной плоскости уровня. Все фронтальные проекции точки А (А2, А2', А2" и т.д.) находятся на фронтальном следе горизонтальной плоскости. Точка i1 представляет собой горизонтальную проекцию оси i, а прямая i2 — ее фронтальную проекцию.

Если вращать точку А вокруг оси i, перпендикулярной к фронтальной плоскости проекций П2 (рис. 9.4), то фронтальные проекции А2, А2', А2" и т.д. точки А будут лежать на окружности, плоскость которой перпендикулярна к оси i и горизонтальной плоскости проекции. При этом горизонтальные проекции А2 А2', А2" и т.д. точки А будут расположены на горизонтальном следе этой плоскости. ОБЩИЕ ПОНЯТИЯ О РАЗВЁРТЫВАНИИ ПОВЕРХНОСТЕЙ Будем рассматривать поверхность как гибкую нерастяжимую оболочку. В этом случае некоторые поверхности путём преобразования можно совместить с плоскостью без разрывов и складок. Поверхности, допускающие такое преобразование, называются развёртывающимися.


http://arthisto.ru/