Французский стиль в русской архитектуре Архитектурные проекты Москвы 20 годов Павел Филонов и русский модернизм Архитектурная история Москвы Авангардное искусство Практика выполнения технических чертежей

Начертательная геометрия Примеры выполнения заданий

Признаки принадлежности точки и прямой плоскости

Для определения принадлежности точки и прямой плоскости, расположенной в пространстве, следует руководствоваться следующими положениями:

точка принадлежит плоскости, если через нее можно провести линию, лежащую в плоскости;

прямая принадлежит плоскости, если она имеет с плоскостью хотя бы две общие точки;

прямая принадлежит плоскости, если она проходит через точку данной плоскости параллельно прямой, принадлежащей этой плоскости.

Через одну точку на плоскости можно провести бесконечное множество линий. Это могут быть произвольные линии и линии, занимающие особое положение по отношению к плоскостям проекций П1 П2, П3. Прямая, принадлежащая рассматриваемой плоскости, проведенная параллельно горизонтальной плоскости проекций, называется горизонталью плоскости.

Прямая, принадлежащая рассматриваемой плоскости, проведенная параллельно фронтальной плоскости проекций, называется фронталью плоскости.

Горизонталь и фронталь являются линиями уровня.

Горизонталь плоскости следует начинать строить с фронтальной проекции, т.к. она параллельна оси x, горизонтальная проекция горизонтали параллельна горизонтальному следу плоскости.

А так как все горизонтали плоскости параллельны между собой, можно считать горизонтальный след плоскости нулевой горизонталью (рис. 5.8).

Фронталь плоскости следует начинать строить с горизонтальной проекции, т.к. она параллельна оси x, фронтальная проекция фронтали параллельна фронтальному следу. Фронтальный след плоскости -нулевая фронталь. Все фронтали плоскости параллельны между-собой (рис. 5.9).

К линии уровня относится и профильная прямая, лежащая в заданной плоскости и параллельная П3.

К главным линиям особого положения в плоскости, кроме линии уровня, относятся линии наибольшего наклона плоскости к плоскости проекций. Определение угла наклона плоскости к плоскостям проекций 

Плоскость общего положения, расположенная в пространств произвольно, наклонена к плоскостям проекций. Для определения в личины двухгранного угла наклона заданной плоскости к какой-либо плоскости проекции используются линии наибольшего наклона плод кости к плоскости проекций: к П1 - линия ската, к П2 - линия наибольшего наклона плоскости к плоскости П2. 

Линии наибольшего наклона плоскости - это прямые, образующие с плоскостью проекций наибольший угол, проводятся в плоскости перпендикулярно к соответствующей линии уровня. Линии наибольшего наклона и ее соответствующая проекция образуют линейны угол, которым измеряется величина двухгранного угла, составленное! данной плоскостью и плоскостью проекций (рис. 5.10).


http://arthisto.ru/