Французский стиль в русской архитектуре Архитектурные проекты Москвы 20 годов Павел Филонов и русский модернизм Архитектурная история Москвы Авангардное искусство Практика выполнения технических чертежей

Начертательная геометрия Примеры выполнения заданий

Параллельность прямых и плоскостей

Прямая параллельна плоскости, если она параллельна какой-либо прямой этой плоскости.

Пример (рис.60). Прямая параллельна плоскости , так как она параллельна прямой , принадлежащей этой плоскости.

Две плоскости параллельны, если две не параллельные прямые одной плоскости параллельны, соответственно, двум прямым другой плоскости.

Пример (Рис.61). Задать плоскость , параллельную плоскости .

Искомую плоскость зададим двумя пересекающимися прямыми, которые параллельны, соответственно, прямым, задающим плоскость  и дополительной прямой “” на этой же плоскости.

Дано:

.

Решение:

1). .

2).

3). .

?: .

Общие понятия перпендикулярности.

Задачи на перпендикулярность – логически взаимно связаны. От плоского прямого угла до нормали к криволинейной поверхности (Рис.62). Без теоремы о проецировании прямого угла не построить перпендикуляр к плоскости. Тем более – не решить задачу для взаимно перпендикулярных плоскостей и не построить на чертеже нормаль к криволинейной поверхности.


По теореме о проецировании прямого угла следует, что прямой угол проецируется без искажения, если одна сторона параллельна плоскости проекций, а вторая – не перпендикулярна к ней.

Особого доказательства здесь не потребуется, если теорему о проецировании прямого угла сравнить с известной обратной теоремой о трех перпендикулярах (Рис.63). По этой теореме, если прямая на плоскости перпендикулярна к наклонной прямой, то она перпендикулярна к проекции этой прямой: ,

Введем на рисунке плоскость проекций П1, параллельную П0 и доказательство теоремы о проецировании прямого угла станет очевидным:

,

 

 


http://arthisto.ru/